Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation.
نویسندگان
چکیده
Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone engineering has proven to be extremely useful. The present study aimed at investigating the effect of 30 mW/cm2 LIPUS stimulation on commercially available human mesenchymal stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time points (7, 14, 21 days). The hypothesis was that LIPUS would improve the osteogenic differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, as demonstrated by cell vitality and proteomic analysis. LIPUS stimulation (a) regulated the balance between osteoblast commitment and differentiation by specific networks (activations of RhoA/ROCK signaling and upregulation of Ribosome constituent/Protein metabolic process, Glycolysis/Gluconeogenesis, RNA metabolic process/Splicing and Tubulins); (b) allowed the maintenance of a few percentage of osteoblast precursors (21 days CD73+/CD90+: 6%; OCT-3/4+/NANOG+/SOX2+: 10%); (c) induced the activation of osteogenic specific pathways shown by gene expression (early: ALPL, COL1A1, late: RUNX2, BGLAP, MAPK1/6) and related protein release (COL1a1, OPN, OC), in particular in the presence of osteogenic soluble factors able to mimic bone microenvironment. To summarize, LIPUS might be able to improve the osteogenic commitment of hMSCs in vitro, and, at the same time, enhance their osteogenic differentiation.
منابع مشابه
Comparison of the effects of extremely low-frequency Electromagnetic field and Betaine on in vitro osteogenic differentiation of human adipose tissue derived-mesenchymal stem cells
Background & Aim: Extremely low-frequency electromagnetic field (ELF-EMF) and betaine are safe factors in bone fracture repair. This study aimed to compare the effects of these two stimuli on osteogenic differentiation of human adipose stem cells (hADSCs). Methods: After obtaining written informed consent, cells were extracted from abdominal adipose tissue and then cultured in vitro until the ...
متن کاملBiological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow
Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...
متن کاملIn Vitro Effects of Low-Intensity Pulsed Ultrasound Stimulation on the Osteogenic Differentiation of Human Alveolar Bone-Derived Mesenchymal Stem Cells for Tooth Tissue Engineering
Ultrasound stimulation produces significant multifunctional effects that are directly relevant to alveolar bone formation, which is necessary for periodontal healing and regeneration. We focused to find out effects of specific duty cycles and the percentage of time that ultrasound is being generated over one on/off pulse period, under ultrasound stimulation. Low-intensity pulsed ultrasound ((LI...
متن کاملEnhancement of Osteogenic Differentiation and Proliferation in Human Mesenchymal Stem Cells by a Modified Low Intensity Ultrasound Stimulation under Simulated Microgravity
Adult stem cells can differentiate into multiple lineages depending on their exposure to differing biochemical and biomechanical inductive factors. Lack of mechanical signals due to disuse can inhibit osteogenesis and induce adipogenesis of mesenchymal stem cells (MSCs). Long-term bed rest due to both brain/spinal cord injury and space travel can lead to disuse osteoporosis that is in part caus...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular physiology
دوره 233 2 شماره
صفحات -
تاریخ انتشار 2018